A Comparison of Various Methods for Computing Bounds for Positive Roots of Polynomials

نویسندگان

  • Alkiviadis G. Akritas
  • Panagiotis S. Vigklas
چکیده

The recent interest in isolating real roots of polynomials has revived interest in computing sharp upper bounds on the values of the positive roots of polynomials. Until now Cauchy’s method was the only one widely used in this process. Ştefănescu’s recently published theorem offers an alternative, but unfortunately is of limited applicability as it works only when there is an even number of sign variations (or changes) in the sequence of coefficients of the polynomial under consideration. In this paper we present a more general theorem that works for any number of sign variations provided a certain condition is met. We compare the method derived from our theorem with the corresponding methods by Cauchy and by Lagrange for computing bounds on the positive roots of polynomials. From the experimental results we conclude that it would be advantageous to extend our theorem so that it works without any restrictive conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bounds for Real Roots of Polynomials

The computation of the real roots of univariate polynomials with real coefficients is done using several algorithmic devices. Many of them are based on the isolation of the real roots, i.e. the computation of a finite number of intervals with the property that each of them contains exactly one root. For that one of the steps is that of computing bounds for the roots. This can be realized using ...

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

Improving the Performance of the Continued Fractions Method Using New Bounds of Positive Roots

Abstract. In this paper we compare four implementations of the Vincent-AkritasStrzeboński Continued Fractions (VAS-CF) real root isolation method using four different (two linear and two quadratic complexity) bounds on the values of the positive roots of polynomials. The quadratic complexity bounds were included to see if the quality of their estimates compensates for their quadratic complexity...

متن کامل

A spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations

In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...

متن کامل

On the Location of Zeros of Complex Polynomials

This paper proves bounds for the zeros of complex valued polynomials. The assertions stated in this work have been specialized in the area of the location of zeros for complex polynomials in terms of two foci: (i) finding bounds for complex valued polynomials with special conditions for the coefficients and (ii) locating zeros of complex valued polynomials without special conditions for the coe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2007